Create a simple time queue where actions (functions or bound methods) can
be queued against the real time clock.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Signed-off-by: Carlos Gil <carlosgilglez@gmail.com>
[daniel@redfelineninja.org.uk: fix regressions on simulator, disable by
default (for now) on real hardware and remove a couple of whitespace
changes to existing files]
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
This means hardware failure won't cause the initial boot to fail. This
won't stop the heart rate app from crashing when it starts up but at
least it will give a comprehensible crash report.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Providing a status bar for all apps to use allows us to reduce allocations
within the applications.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The main simplification is to adopt the status bar (with the status bar
clock disabled) and to restructure the way draw and redraw are handled.
Since the clock application is one of the most popular to customize it
has also had extensive commenting added to describe how it works.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Currently if the real battery level is <5% then a redraw from scratch will
not draw the outline of the battery. Fix this by adding a special case for
negative previous states (-1 charging, -2 redraw).
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
This is intended to be reused by any app that shows the clock as part
of the status bar at the top of the display.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
For some users the icon is pointless because they would rather install
the clock on the quick ring but this clock is something of a novelty so
it would be quite reasonable to only launch it when in the mood for
decoding something!
Happily the icon compresses nicely too!
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
This also adds the Fibonaci Clock, Haiku viewer and the Game of Life
to the manifest. They are *not* registered by default at this point
since, although we can currently spare the internal flash space there
is more competition for RAM so we have to trade off out-of-the-box
convenience with keeping as much RAM as possible for users to do
"cool things".
Given the zen of wasp-os is to try to make is as easy as possible for
users to become coders we currently favour reserving the space for the
cool things (and implicitly encouraging them to write a couple of lines
of python to enable the bonus applications.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Signed-off-by: Johannes Wache <jbwa@posteo.de>
[daniel@redfelineninja.org.uk: Tidy up the "git soup", dropped the manifest
changes and integrated the description from the original PR into the
docstring for the app]
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
This app serves as an example of using the filesystem to make an
application more flexible. Both the verses and the icon will be
loaded from the filesystem rather than being burned into the
wasp-os binaries.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Having an extra identifier for the Pin() is a waste of RAM... if you need
the CS pin then grab it from watch.flash._cspins instead.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Wake from deep power down is now handled in the driver. Remove attempt
to wake the board files.
Signed-off-by: Jeffrey Bailey <wb.jeffrey@gmail.com>
[daniel@redfelineninja.org.uk: Update commit message, simplify
slightly, extended to all boards with spinor flash and update
gitmodules to bring in the flash driver updates.]
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Currently the simulator cannot run correctly because the indentation
in Manager.__init__ mixes tab and spaces. This is something CPython3
doesn't like but MicroPython is ok about.
Fix the obvious by using correct indentation.
Fixes: 889115f ("wasp: Allow app initialization to fail")
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Currently with CST816S controllers (but not CST716S controllers) then a
swipe delivered whilst the device is asleep will sometimes be processed
after we wake it up. That's never likely to be useful. Fix this by
explicitly clearing the event buffer as part of the wakeup sequence.
Reported-by: Siroj42 <siroj42@users.noreply.github.com>
Fixes: #65
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Colmi has released a new revision of the P8 hardware based on a different
accelerometer. That makes it impossible for the StepCounterApp to
initialize and currently this takes down the whole GUI due to the
uncaught exception.
Fix this by skipping applications that will not initialize.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The screenshot is automatically named after the application currently
running and copied into the res/ directory. This allows the application
screenshots to be quickly updates if/when the screenshots get out of date
as the applications are improved.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
On a device with NEXT support we need to make sure we reset the stopwatch
when switching away from it (if it is not running) since there may not
be any other way to reset it.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Exceptions on th sleep path more or less kill the device (it is half
alseep and is not on... but not off enough for the power button to work.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Currently the not-implemented message provokes GadgetBridget into
issuing lots of annoying toaster messages. It's still useful for debugging
but let's disable it by default.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
This is useful for devices that do not have touchscreens. It can be used
to cycle through the quick ring and to check out notifications.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Currently the backlight is permanently on at its lowest level. The
backlight is so dim that this is almost impossible to detect. I only
found it when lying in a field in total darkness and observing that the
screen wasn't quite as black as I expected.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The K9 is similar to the PineTime and P8 devices but does not appear
to use the CST[78]16 touch screen controllers. At present the protocol
is not known (readfrom yields all zeros, readfrom_mem provokes an
exception) so we have a hugely limited interface consisting of the side
button and the touchscreen interrupts (in other words we can treat the
touchscreen like a second button).
Works suprisingly well considering...
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
All the components (bootloader, reloader, micropython) has P8 support added
some time back but without full integration at the wasp-os level. Let's
add it!
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Notifier was a dumb name so make it better. Now that we have a decent
name it should be obvious how to handle the BLE connection status icon!
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
This requires a modified version of Gadgetbridge and currently works by
implementing the BangleJS protocol.
In Gadgetbridge ensure "Sync time" is *not* set and choose "Don't pair"
when adding the PineTime device.
This has two useful properties. Firstly it means the watch will be
maintained in the background, allowing the REPL to be used for
notifications and other updates. Secondly it will save a little bit
of power by reducing the work needed to handle spurious wake ups.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Currently the simulator relies on the keyboard to issue touchscreen
gestures and button presses. Fix this by adding swipe detection and
introducing a skin which gives us the capability to press the button
using touchscreens or pointer devices.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The algorithm is fairly crude and the GUI is pretty simple but, if you stay
still for 10 seconds, there's a good chance of an accurate pulse
reading.
Of course if you jog on the spot for ten seconds it more likely to
calculate how many steps per minutes you are performing!
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
This avoids an implusive change in base value and makes the waveform a
little more interesting.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The heart rate analysis step is still a work in progress but the current
app allows us to visualize the the results of the signal conditioning.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The original approach is *really* bad at drawing vertical lines (it ends
up working a pixel at a time and works the chip select for each one.
Optimize both the pixel fill and the use of the line buffer. The result
is 20% faster for quarter screen fills, 3x for horizontal lines and 6x
for vertical lines.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
We also change the colour scheme slightly because the increased size of
the clock interferes visually with the main display when it is bright
white.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
There nothing in the docs to give the delay time required after a
reset. Currently we use 200ms because that appears on some older
code for BMA423 but is removed in more recent drivers. 50ms is still
a long time (for hardware) and has held up in testing.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Currently there's no fancy algorithms to estimate stride length. Just
pure simple step counting directly from the hardware's "intelligence
engine".
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The logo module is currently unused but it simply sits there consuming
flash. Let's shift it to the demo app to is can consume RAM instead (but
only when we upload the demo to the watch).
sx is measured in pixels (2-bytes) and len(display.linebuffer) gives
a value in bytes so the divisor isn't right.
Whilst we are here let's make sure we use integer division too.
Fixes: #18
wasp-os contains circular import dependancies (wasp includes apps which
include wasp) but this is normally harmless.
However using __init__.py exagerated to the problem and since the benefit
of the __init__ file is pretty anyway the let's just remove it.
The code to recalculate the uptime to walltime adjustment was broken
(e.g. the longer we leave it after reboot the more inaccurate the time
setting becomes).
Fixes: 80079e4 ("wasp: nrf_rtc: Add a tiny bit of extra resolution")
We now have a couple of applications (stopwatch, Game of Life) that benefit
from sub-second precision. The micropython RTC/utime code for nrf still
needs a major overhaul but this allows us to paper over the cracks for
just a little longer.
On nRF devices if we print with the NUS console disconnected (instead
of never connected) then things we can end up hanging. Better only
to print an exception if the watch class contains a method to do
that.
This is getting us much closer to the final UI concept. We have a
quick ring from which we can select typical apps such as clock and
stopwatch which will (eventually) be supplemented with step counting
and heart rate monitoriing. More exotic apps (currenrtly torch, self
test, settings) are all relagated to the launcher ring.
There are still some holes here. In particular the RTC resolution on
nRF devices (such as PineTime) is currently a full second (meaning
the centiseconds will always be zero. Nevertheless that isn't the apps
fault... as we can see when we run on the simulator.
If an application crashes let's report it on the device so it can be
distinguished from a hang (if nothing else it should mean we get better
bug reports).
There's a bunch of different changes here but there are only really three
big wins. The biggest win comes from restructuring the 2-bit RLE decode
loop to avoid the inner function (~20%) but the switch to 16-bit writes in
_fill() and adoption of quick_write (e.g. no CS toggling) are also
note worthy (and about 5% each).
As we enrich the navigation options we will increasinly need to visualize
between apps where up/down will switch us between rings and there
up/down is needed to scroll through content.
This might be a reasonable preference for the setings but, more importantly,
we can also set blank_after to very high values to ensure the watch doesn't
sleep during the voice over in videos!
This gives the simulator a more natural feel since the "swipe left" action
usually means "more a screen to the right". This will probably make
testing games impossible but makes it much easier to navigate the menus.
Here the biggest changes are in the test application because we
refactor a number of the tests to make better use of the button.
Although applications may consume button events it does have a
default behavior which is to switch to the default application
(usually the clock).
After a bit of testing I have not yet come up with a fast, visually
acceptable horizontal animated effect. Instead we simply reply on
screen blanking during the redraw... meaning there is no need for an
effect hint.
This is a big change that break compatiblity with existing applications
*and* with existing installed versions of main.py.
When upgrading it is import to update main.py:
./tools/wasptool --upload wasp/main.py
This is something of an experiment but now the app roll is traversed using
horizontal swipes and applications should primarily use vertical swipes
to navigate internally. This is mostly because if "feels" better but it
also leaves the vertical scrolling hardware available for use by the
app.
This makes line-by-line drawing more efficient because don't have to
handle the dc line. The optimization targets font rendering and if good
for slightly less than 10% rendering improvement.
Moving it from applications into the watch is useful for two reasons.
Firstly it means applications don't need to know as much about the
display color depth and secondly it makes it easier to replace the
drawing routines with wasptool.
We now generate documentation for everything included in the PineTime
manifest (although, at this stage, not everything in the manifest has
all the required docstrings).
In addition to the fix (which is simple) we also modify the button handling
of the simulator because, rather by acident, it relies on the bugs in the
battery meter redraw to ensure the simulator stays active.
Migrate the filling of the line buffer into a seperate function.
This does naturally reduce the cost of the loop management but
much more importantly allows us to use viper native code
generator.
The ADC on nRF doesn't run precisely stable which means the battery
meter can flicker if updated too often. This will eventually
be fixed by the framework but, for now, let's just force the
update rate to be fairly slow.
At this point both the simulator and a PineTime will come up
and show a clock (although in the case of the PineTime the clock
will just come up at 12:00).
Currently this supports time only (no date) and it based on the
RTCounter class which is customized for nRF ports. At present
the nRF port doesn't have proper machine.rtc support so we have
implemented within wasp instead.