1
0
Fork 0
wasp-os/tools/rle_encode.py
Daniel Thompson 906c313e49 tools: rle_encode: Optimize the 2-bit encoding slightly
This results in a image that is entirely ROMable.
2020-04-10 20:20:48 +01:00

263 lines
7 KiB
Python
Executable file

#!/usr/bin/env python3
# SPDX-License-Identifier: LGPL-3.0-or-later
# Copyright (C) 2020 Daniel Thompson
import argparse
import sys
import os.path
from PIL import Image
def varname(p):
return os.path.basename(os.path.splitext(p)[0])
def encode(im):
pixels = im.load()
rle = []
rl = 0
px = pixels[0, 0]
def encode_pixel(px, rl):
while rl > 255:
rle.append(255)
rle.append(0)
rl -= 255
rle.append(rl)
for y in range(im.height):
for x in range(im.width):
newpx = pixels[x, y]
if newpx == px:
rl += 1
assert(rl < (1 << 21))
continue
# Code the previous run
encode_pixel(px, rl)
# Start a new run
rl = 1
px = newpx
# Handle the final run
encode_pixel(px, rl)
return (im.width, im.height, bytes(rle))
def encode_2bit(im):
"""2-bit palette based RLE encoder.
This encoder has a reprogrammable 2-bit palette. This allows it to encode
arbitrary images with a full 8-bit depth but the 2-byte overhead each time
a new colour is introduced means it is not efficient unless the image is
carefully constructed to keep a good locality of reference for the three
non-background colours.
The encoding competes well with the 1-bit encoder for small monochrome
images but once run-lengths longer than 62 start to become frequent then
this encoding is about 30% larger than a 1-bit encoding.
"""
pixels = im.load()
assert(im.width <= 255)
assert(im.height <= 255)
rle = []
rl = 0
px = pixels[0, 0]
palette = [0, 0xfc, 0x2d, 0xff]
next_color = 1
def encode_pixel(px, rl):
nonlocal next_color
px = (px[0] & 0xe0) | ((px[1] & 0xe0) >> 3) | ((px[2] & 0xc0) >> 6)
if px not in palette:
rle.append(next_color << 6)
rle.append(px)
palette[next_color] = px
next_color += 1
if next_color >= len(palette):
next_color = 1
px = palette.index(px)
if rl >= 63:
rle.append((px << 6) + 63)
rl -= 63
while rl >= 255:
rle.append(255)
rl -= 255
rle.append(rl)
else:
rle.append((px << 6) + rl)
# Issue the descriptor
rle.append(2)
rle.append(im.width)
rle.append(im.height)
for y in range(im.height):
for x in range(im.width):
newpx = pixels[x, y]
if newpx == px:
rl += 1
assert(rl < (1 << 21))
continue
# Code the previous run
encode_pixel(px, rl)
# Start a new run
rl = 1
px = newpx
# Handle the final run
encode_pixel(px, rl)
return bytes(rle)
def encode_8bit(im):
"""Experimental 8-bit RLE encoder.
For monochrome images this is about 3x less efficient than the 1-bit
encoder. This encoder is not currently used anywhere in wasp-os and
currently there is no decoder either (so don't assume this code
actually works).
"""
pixels = im.load()
rle = []
rl = 0
px = pixels[0, 0]
def encode_pixel(px, rl):
px = (px[0] & 0xe0) | ((px[1] & 0xe0) >> 3) | ((px[2] & 0xc0) >> 6)
rle.append(px)
if rl > 0:
rle.append(px)
rl -= 2
if rl > (1 << 14):
rle.append(0x80 | ((rl >> 14) & 0x7f))
if rl > (1 << 7):
rle.append(0x80 | ((rl >> 7) & 0x7f))
if rl >= 0:
rle.append( rl & 0x7f )
for y in range(im.height):
for x in range(im.width):
newpx = pixels[x, y]
if newpx == px:
rl += 1
assert(rl < (1 << 21))
continue
# Code the previous run
encode_pixel(px, rl)
# Start a new run
rl = 1
px = newpx
# Handle the final run
encode_pixel(px, rl)
return (im.width, im.height, bytes(rle))
def render_c(image, fname):
print(f'// 1-bit RLE, generated from {fname}, {len(image[2])} bytes')
print(f'static const uint8_t {varname(fname)}[] = {{')
print(' ', end='')
i = 0
for rl in image[2]:
print(f' {hex(rl)},', end='')
i += 1
if i == 12:
print('\n ', end='')
i = 0
print('\n};')
def decode_to_ascii(image):
(sx, sy, rle) = image
data = bytearray(2*sx)
dp = 0
black = ord('#')
white = ord(' ')
color = black
for rl in rle:
while rl:
data[dp] = color
data[dp+1] = color
dp += 2
rl -= 1
if dp >= (2*sx):
print(data.decode('utf-8'))
dp = 0
if color == black:
color = white
else:
color = black
# Check the image is the correct length
assert(dp == 0)
parser = argparse.ArgumentParser(description='RLE encoder tool.')
parser.add_argument('files', nargs='+',
help='files to be encoded')
parser.add_argument('--ascii', action='store_true',
help='Run the resulting image(s) through an ascii art decoder')
parser.add_argument('--c', action='store_true',
help='Render the output as C instead of python')
parser.add_argument('--indent', default=0, type=int,
help='Add extra indentation in the generated code')
parser.add_argument('--2bit', action='store_true', dest='twobit',
help='Generate 2-bit image')
parser.add_argument('--8bit', action='store_true', dest='eightbit',
help='Generate 8-bit image')
args = parser.parse_args()
extra_indent = ' ' * args.indent
if args.eightbit:
encoder = encode_8bit
depth = 8
elif args.twobit:
encoder = encode_2bit
depth = 2
else:
encoder = encode
depth =1
for fname in args.files:
image = encoder(Image.open(fname))
if args.c:
render_c(image, fname)
else:
if len(image) == 3:
print(f'{extra_indent}# {depth}-bit RLE, generated from {fname}, '
f'{len(image[2])} bytes')
(x, y, pixels) = image
print(f'{extra_indent}{varname(fname)} = (')
print(f'{extra_indent} {x}, {y},')
else:
print(f'{extra_indent}# {depth}-bit RLE, generated from {fname}, '
f'{len(image)} bytes')
pixels = image[3:]
print(f'{extra_indent}{varname(fname)} = (')
print(f'{extra_indent} {image[0:1]}')
print(f'{extra_indent} {image[1:3]}')
# Split the bytestring to ensure each line is short enough to
# be absorbed on the target if needed.
for i in range(0, len(pixels), 16):
print(f'{extra_indent} {pixels[i:i+16]}')
print(f'{extra_indent})')
if args.ascii:
print()
decode_to_ascii(image)