This also adds the Fibonaci Clock, Haiku viewer and the Game of Life
to the manifest. They are *not* registered by default at this point
since, although we can currently spare the internal flash space there
is more competition for RAM so we have to trade off out-of-the-box
convenience with keeping as much RAM as possible for users to do
"cool things".
Given the zen of wasp-os is to try to make is as easy as possible for
users to become coders we currently favour reserving the space for the
cool things (and implicitly encouraging them to write a couple of lines
of python to enable the bonus applications.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Having an extra identifier for the Pin() is a waste of RAM... if you need
the CS pin then grab it from watch.flash._cspins instead.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Wake from deep power down is now handled in the driver. Remove attempt
to wake the board files.
Signed-off-by: Jeffrey Bailey <wb.jeffrey@gmail.com>
[daniel@redfelineninja.org.uk: Update commit message, simplify
slightly, extended to all boards with spinor flash and update
gitmodules to bring in the flash driver updates.]
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Notifier was a dumb name so make it better. Now that we have a decent
name it should be obvious how to handle the BLE connection status icon!
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
This requires a modified version of Gadgetbridge and currently works by
implementing the BangleJS protocol.
In Gadgetbridge ensure "Sync time" is *not* set and choose "Don't pair"
when adding the PineTime device.
This has two useful properties. Firstly it means the watch will be
maintained in the background, allowing the REPL to be used for
notifications and other updates. Secondly it will save a little bit
of power by reducing the work needed to handle spurious wake ups.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The heart rate analysis step is still a work in progress but the current
app allows us to visualize the the results of the signal conditioning.
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
Currently there's no fancy algorithms to estimate stride length. Just
pure simple step counting directly from the hardware's "intelligence
engine".
Signed-off-by: Daniel Thompson <daniel@redfelineninja.org.uk>
The logo module is currently unused but it simply sits there consuming
flash. Let's shift it to the demo app to is can consume RAM instead (but
only when we upload the demo to the watch).
wasp-os contains circular import dependancies (wasp includes apps which
include wasp) but this is normally harmless.
However using __init__.py exagerated to the problem and since the benefit
of the __init__ file is pretty anyway the let's just remove it.
There are still some holes here. In particular the RTC resolution on
nRF devices (such as PineTime) is currently a full second (meaning
the centiseconds will always be zero. Nevertheless that isn't the apps
fault... as we can see when we run on the simulator.
If an application crashes let's report it on the device so it can be
distinguished from a hang (if nothing else it should mean we get better
bug reports).
This is a big change that break compatiblity with existing applications
*and* with existing installed versions of main.py.
When upgrading it is import to update main.py:
./tools/wasptool --upload wasp/main.py
Moving it from applications into the watch is useful for two reasons.
Firstly it means applications don't need to know as much about the
display color depth and secondly it makes it easier to replace the
drawing routines with wasptool.
At this point both the simulator and a PineTime will come up
and show a clock (although in the case of the PineTime the clock
will just come up at 12:00).
Currently this supports time only (no date) and it based on the
RTCounter class which is customized for nRF ports. At present
the nRF port doesn't have proper machine.rtc support so we have
implemented within wasp instead.