171 lines
4.2 KiB
Python
171 lines
4.2 KiB
Python
|
# SPDX-License-Identifier: LGPL-3.0-or-later
|
||
|
# Copyright (C) 2020 Daniel Thompson
|
||
|
|
||
|
"""Photoplethysmogram (PPG) Signal Processing
|
||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
Algorithms and signal processing primatives that can be used to convert
|
||
|
raw PPG signals into something useful.
|
||
|
"""
|
||
|
|
||
|
import array
|
||
|
import micropython
|
||
|
|
||
|
@micropython.viper
|
||
|
def _compare(d1, d2, count: int, shift: int) -> int:
|
||
|
"""Compare two sequences of (signed) bytes and quantify how dissimilar
|
||
|
they are.
|
||
|
"""
|
||
|
p1 = ptr8(d1)
|
||
|
p2 = ptr8(d2)
|
||
|
|
||
|
e = 0
|
||
|
for i in range(count):
|
||
|
s1 = int(p1[i])
|
||
|
if s1 > 127:
|
||
|
s1 -= 256
|
||
|
|
||
|
s2 = int(p2[i])
|
||
|
if s2 > 127:
|
||
|
s2 -= 256
|
||
|
|
||
|
d = s1 - s2
|
||
|
e += d*d
|
||
|
return e
|
||
|
|
||
|
class Biquad():
|
||
|
"""Direct Form II Biquad Filter"""
|
||
|
|
||
|
def __init__(self, b0, b1, b2, a1, a2):
|
||
|
self._coeff = (b0, b1, b2, a1, a2)
|
||
|
self._v1 = 0
|
||
|
self._v2 = 0
|
||
|
|
||
|
def step(self, x):
|
||
|
c = self._coeff
|
||
|
v1 = self._v1
|
||
|
v2 = self._v2
|
||
|
|
||
|
v = x - (c[3] * v1) - (c[4] * v2)
|
||
|
y = (c[0] * v) + (c[1] * v1) + (c[2] * v2)
|
||
|
|
||
|
self._v2 = v1
|
||
|
self._v1 = v
|
||
|
return y
|
||
|
|
||
|
class PTAGC():
|
||
|
"""Peak Tracking Automatic Gain Control
|
||
|
|
||
|
In order for the correlation checks to work correctly we must
|
||
|
aggressively reject spikes caused by fast DC steps. Setting a
|
||
|
threshold based on the median is very effective at killing
|
||
|
spikes but needs an extra 1k for sample storage which isn't
|
||
|
really plausible for a microcontroller.
|
||
|
"""
|
||
|
def __init__(self, start, decay, threshold):
|
||
|
self._peak = start
|
||
|
self._decay = decay
|
||
|
self._boost = 1 / decay
|
||
|
self._threshold = threshold
|
||
|
|
||
|
def step(self, spl):
|
||
|
# peak tracking
|
||
|
peak = self._peak
|
||
|
if abs(spl) > peak:
|
||
|
peak *= self._boost
|
||
|
else:
|
||
|
peak *= self._decay
|
||
|
self._peak = peak
|
||
|
|
||
|
# rejection filter (clipper)
|
||
|
threshold = self._threshold
|
||
|
if spl > (peak * threshold) or spl < (peak * -threshold):
|
||
|
return 0
|
||
|
|
||
|
# booster
|
||
|
spl = 100 * spl / (2 * peak)
|
||
|
|
||
|
return spl
|
||
|
|
||
|
class PPG():
|
||
|
"""
|
||
|
"""
|
||
|
|
||
|
def __init__(self, spl):
|
||
|
self._offset = spl
|
||
|
self.data = array.array('b')
|
||
|
|
||
|
self._hpf = Biquad(0.87033078, -1.74066156, 0.87033078,
|
||
|
-1.72377617, 0.75754694)
|
||
|
self._agc = PTAGC(20, 0.971, 2)
|
||
|
self._lpf = Biquad(0.11595249, 0.23190498, 0.11595249,
|
||
|
-0.72168143, 0.18549138)
|
||
|
|
||
|
def preprocess(self, spl):
|
||
|
"""Preprocess a PPG sample.
|
||
|
|
||
|
Must be called at 24Hz for accurate heart rate calculations.
|
||
|
"""
|
||
|
spl -= self._offset
|
||
|
spl = self._hpf.step(spl)
|
||
|
spl = self._agc.step(spl)
|
||
|
spl = self._lpf.step(spl)
|
||
|
spl = int(spl)
|
||
|
|
||
|
self.data.append(spl)
|
||
|
return spl
|
||
|
|
||
|
def _get_heart_rate(self):
|
||
|
def compare(d, shift):
|
||
|
return _compare(d[shift:], d[:-shift], len(d)-shift, shift)
|
||
|
|
||
|
def trough(d, mn, mx):
|
||
|
z2 = compare(d, mn-2)
|
||
|
z1 = compare(d, mn-1)
|
||
|
for i in range(mn, mx+1):
|
||
|
z = compare(d, i)
|
||
|
if z2 > z1 and z1 < z:
|
||
|
return i
|
||
|
z2 = z1
|
||
|
z1 = z
|
||
|
|
||
|
return -1
|
||
|
|
||
|
data = memoryview(self.data)
|
||
|
|
||
|
# Search initially from ~210 to 30 bpm
|
||
|
t0 = trough(data, 7, 48)
|
||
|
if t0 < 0:
|
||
|
return None
|
||
|
|
||
|
# Check the second cycle ...
|
||
|
t1 = t0 * 2
|
||
|
t1 = trough(data, t1 - 5, t1 + 5)
|
||
|
if t1 < 0:
|
||
|
return None
|
||
|
|
||
|
# ... and the third
|
||
|
t2 = (t1 * 3) // 2
|
||
|
t2 = trough(data, t2 - 5, t2 + 4)
|
||
|
if t2 < 0:
|
||
|
return None
|
||
|
|
||
|
# If we can find a fourth cycle then use that for the extra
|
||
|
# precision otherwise report whatever we've found
|
||
|
t3 = (t2 * 4) // 3
|
||
|
t3 = trough(data, t3 - 4, t3 + 4)
|
||
|
if t3 < 0:
|
||
|
return (60 * 24 * 3) // t2
|
||
|
return (60 * 24 * 4) // t3
|
||
|
|
||
|
def get_heart_rate(self):
|
||
|
if len(self.data) < 200:
|
||
|
return None
|
||
|
|
||
|
hr = self._get_heart_rate()
|
||
|
|
||
|
# Clear out the accumulated data
|
||
|
self.data = array.array('b')
|
||
|
|
||
|
return hr
|