1
0
Fork 0
InfiniTime/src/drivers/SpiNorFlash.cpp
2020-11-15 05:04:22 +01:00

138 lines
4.1 KiB
C++

#include "SpiNorFlash.h"
#include <hal/nrf_gpio.h>
#include <libraries/delay/nrf_delay.h>
#include <libraries/log/nrf_log.h>
#include "Spi.h"
using namespace Pinetime::Drivers;
SpiNorFlash::SpiNorFlash(Spi& spi) : spi{spi} {
}
void SpiNorFlash::Init() {
device_id = ReadIdentificaion();
NRF_LOG_INFO("[SpiNorFlash] Manufacturer : %d, Memory type : %d, memory density : %d", device_id.manufacturer, device_id.type, device_id.density);
}
void SpiNorFlash::Uninit() {
}
void SpiNorFlash::Sleep() {
auto cmd = static_cast<uint8_t>(Commands::DeepPowerDown);
spi.Write(&cmd, sizeof(uint8_t));
NRF_LOG_INFO("[SpiNorFlash] Sleep")
}
void SpiNorFlash::Wakeup() {
// send Commands::ReleaseFromDeepPowerDown then 3 dummy bytes before reading Device ID
static constexpr uint8_t cmdSize = 4;
uint8_t cmd[cmdSize] = {static_cast<uint8_t>(Commands::ReleaseFromDeepPowerDown), 0x01, 0x02, 0x03};
uint8_t id = 0;
spi.Read(reinterpret_cast<uint8_t *>(&cmd), cmdSize, &id, 1);
auto devId = device_id = ReadIdentificaion();
if(devId.type != device_id.type) {
NRF_LOG_INFO("[SpiNorFlash] ID on Wakeup: Failed");
}
else {
NRF_LOG_INFO("[SpiNorFlash] ID on Wakeup: %d", id);
}
NRF_LOG_INFO("[SpiNorFlash] Wakeup")
}
SpiNorFlash::Identification SpiNorFlash::ReadIdentificaion() {
auto cmd = static_cast<uint8_t>(Commands::ReadIdentification);
Identification identification;
spi.Read(&cmd, 1, reinterpret_cast<uint8_t *>(&identification), sizeof(Identification));
return identification;
}
uint8_t SpiNorFlash::ReadStatusRegister() {
auto cmd = static_cast<uint8_t>(Commands::ReadStatusRegister);
uint8_t status;
spi.Read(&cmd, sizeof(cmd), &status, sizeof(uint8_t));
return status;
}
bool SpiNorFlash::WriteInProgress() {
return (ReadStatusRegister() & 0x01u) == 0x01u;
}
bool SpiNorFlash::WriteEnabled() {
return (ReadStatusRegister() & 0x02u) == 0x02u;
}
uint8_t SpiNorFlash::ReadConfigurationRegister() {
auto cmd = static_cast<uint8_t>(Commands::ReadConfigurationRegister);
uint8_t status;
spi.Read(&cmd, sizeof(cmd), &status, sizeof(uint8_t));
return status;
}
void SpiNorFlash::Read(uint32_t address, uint8_t *buffer, size_t size) {
static constexpr uint8_t cmdSize = 4;
uint8_t cmd[cmdSize] = { static_cast<uint8_t>(Commands::Read), (uint8_t)(address >> 16U), (uint8_t)(address >> 8U),
(uint8_t)address };
spi.Read(reinterpret_cast<uint8_t *>(&cmd), cmdSize, buffer, size);
}
void SpiNorFlash::WriteEnable() {
auto cmd = static_cast<uint8_t>(Commands::WriteEnable);
spi.Read(&cmd, sizeof(cmd), nullptr, 0);
}
void SpiNorFlash::SectorErase(uint32_t sectorAddress) {
static constexpr uint8_t cmdSize = 4;
uint8_t cmd[cmdSize] = { static_cast<uint8_t>(Commands::SectorErase), (uint8_t)(sectorAddress >> 16U), (uint8_t)(sectorAddress >> 8U),
(uint8_t)sectorAddress };
WriteEnable();
while(!WriteEnabled()) vTaskDelay(1);
spi.Read(reinterpret_cast<uint8_t *>(&cmd), cmdSize, nullptr, 0);
while(WriteInProgress()) vTaskDelay(1);
}
uint8_t SpiNorFlash::ReadSecurityRegister() {
auto cmd = static_cast<uint8_t>(Commands::ReadSecurityRegister);
uint8_t status;
spi.Read(&cmd, sizeof(cmd), &status, sizeof(uint8_t));
return status;
}
bool SpiNorFlash::ProgramFailed() {
return (ReadSecurityRegister() & 0x20u) == 0x20u;
}
bool SpiNorFlash::EraseFailed() {
return (ReadSecurityRegister() & 0x40u) == 0x40u;
}
void SpiNorFlash::Write(uint32_t address, const uint8_t *buffer, size_t size) {
static constexpr uint8_t cmdSize = 4;
size_t len = size;
uint32_t addr = address;
const uint8_t* b = buffer;
while(len > 0) {
uint32_t pageLimit = (addr & ~(pageSize - 1u)) + pageSize;
uint32_t toWrite = pageLimit - addr > len ? len : pageLimit - addr;
uint8_t cmd[cmdSize] = { static_cast<uint8_t>(Commands::PageProgram), (uint8_t)(addr >> 16U), (uint8_t)(addr >> 8U),
(uint8_t)addr };
WriteEnable();
while(!WriteEnabled()) vTaskDelay(1);
spi.WriteCmdAndBuffer(cmd, cmdSize, b, toWrite);
while(WriteInProgress()) vTaskDelay(1);
addr += toWrite;
b += toWrite;
len -= toWrite;
}
}